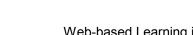
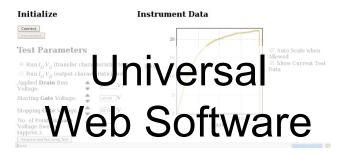

A Web Service and Interface for Electronic Device Characterization

Sumit Dutta, Shreya Prakash, David Estrada, and Eric Pop


Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign 2010 ASEE Annual Conference & Exposition Session 2232

Labs for Everyone


Lab Software

PopLab Remote Device Characterization

The Theory Course Dilemma

- Large enrollment often
- Lab course challenging to set up
 - Facilities \rightarrow expensive (>\$100k)
 - Instructors → limited
- Consequence: exclusive focus on theory
- Solution:
 - "Lightweight" web interfaces for lab instruments
 - Use existing instructional or research lab

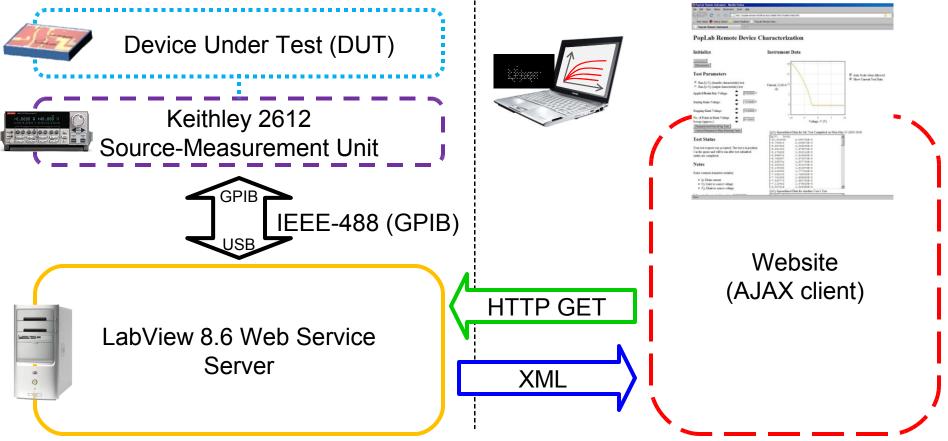
I

Outline and Objectives

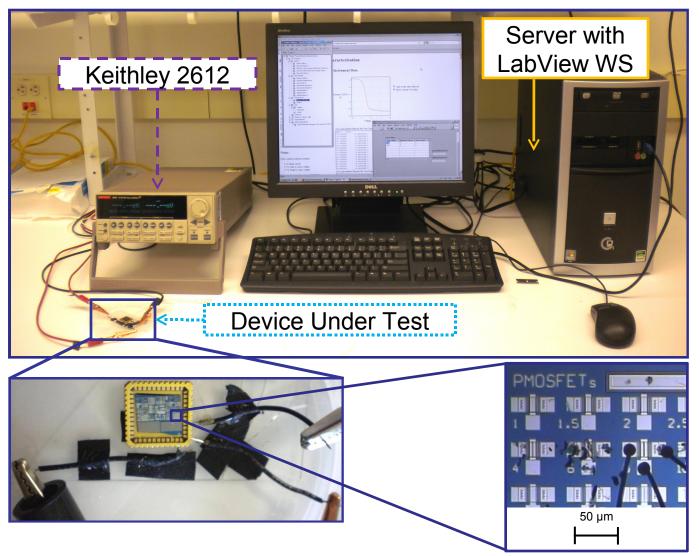
- Goal: Lab exposure in theory classes
- Enabling virtual test and measurement with Web Services
- Creating Web interfaces for students
- Suggestions based on application in solid-state electronics course

Outline and Objectives

- Goal: Lab exposure in theory classes
- Enabling virtual test and measurement with Web Services
- Creating Web interfaces for students
- Suggestions based on application in solid-state electronics course



Web Service and Interface


Frontend

Backend

Lab Setup

Web-based Learning in ECE

LabView Web Service Requests

- Client-activated session management
 - Data Provider (connect/disconnect)
- Client-activated test queue
 - Queue Handler (test submission/canceling)
- Internal process
 - Queue Manager (dequeue tests)
 - Instrument Control (driver)

	LabVIEV	N [°] 8.6							
	Root Directory C:\Program Files\National Instruments\ <mark>LabVIEW 8.6</mark> \www								
	HTTP Port 80								
	IP Address of Listener								
	Listen on all net addresses	~							
)	Allow Access Remote Front Panels Web Services	Scripting							

Outline and Objectives

- Goal: Lab exposure in theory classes
- Enabling virtual test and measurement with Web Services
- Creating Web interfaces for students

 Suggestions based on application in solid-state electronics course

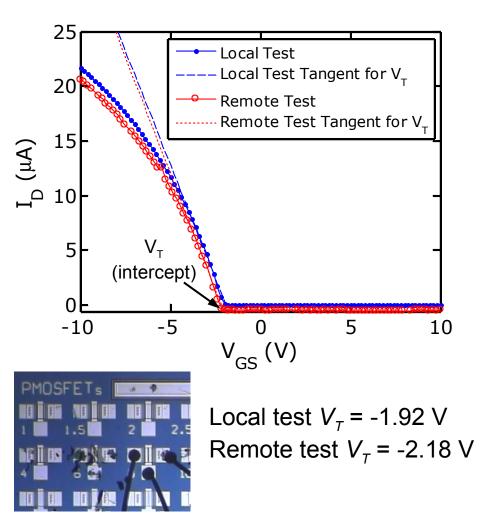
Lightweight Messaging & Interface

- Consume ReSTful Web Service
 - User requests by HTTP GET
 - LabView response in XML
- AJAX used for underlying messaging
 - All tasks accomplished with mouse clicks
 - Plot continuously refreshes itself with data from instrument's currently running test

Stability of Technologies

- Web Service
 - XML understood on virtually all platforms
- Website interface
 - AJAX conducive to Web Services support
- Many other possible interfaces
 - Java applets
 - iPhone app
 - Application extensions

ECE ILLINOIC


1

			DEPARTMENT OF	ELECTRICAL AND COMPOTER ENGI	NEERING
🥙 PopLab Remote Instrument - Mozilla F	irefox				_8×
<u>File Edit View History Bookmarks I</u>	[ools <u>H</u> elp				
(<)	tp://poplab-remote.mntl.illinois.edu	u/netlab/html/charlab/index.html		😭 👻 Google	م
🔎 Most Visited 🌮 Getting Started 📐 Lates	st Headlines 📩 PopLab Remote	e Instru_			
PopLab Remote Instrument	*				
PopLab Remote	Device Cha	racterization			-
Initialize	I	nstrument Data			
Connect Disconnect		20			
Test Parameters		15		ale when Allowed	
 Run I_D-V_G (transfer characteristic C Run I_D-V_D (output characteristic) 		current, I (1E-6 ¹⁰		urrent Test Data	-
Applied Drain Bias Voltage:	0.050000 V	No Bar	ig widt	h!	
Starting Gate Voltage:	-10.0000(V		-3	•••	
Stopping Gate Voltage:	10.00000 V				
No. of Points in Gate Voltage	97.00000	-10 -5 0	0 5 10		
Sweep (approx.): Request and Run Id-Vg Test	, , , , , , , , , , , , , , , , , , , 	Voltage	e, V (V)		
Cancel Request or Stop Running Test	st	I_DV_G Spreadsheet Data for My Test Cor	mplated on Mon May 21 2010 10-01		
Test Status		$\frac{Vg}{Vg}(V) Id(A)$	mpiered on Ivion Iviay 51 2010 10:01		
Your test request was accepted. The 1 in the queue and will be run after test	Constant State - Charles and and				
earlier are completed.	r submitted				
Notes					
Some common transistor notation:					
• ID: Drain current					
• V _G : Gate to source voltage					
• V _D : Drain to source voltage					

Data Quality

- 500+ bytes per data packet
- Data acquisition rate within 10 Hz
- Rate adjustable for desired measurement sensitivity

Outline and Objectives

- Goal: Lab exposure in theory classes
- Enabling virtual test and measurement with Web Services
- Creating Web interfaces for students

 Suggestions based on application in solid-state electronics course

ECE ILLINOIS

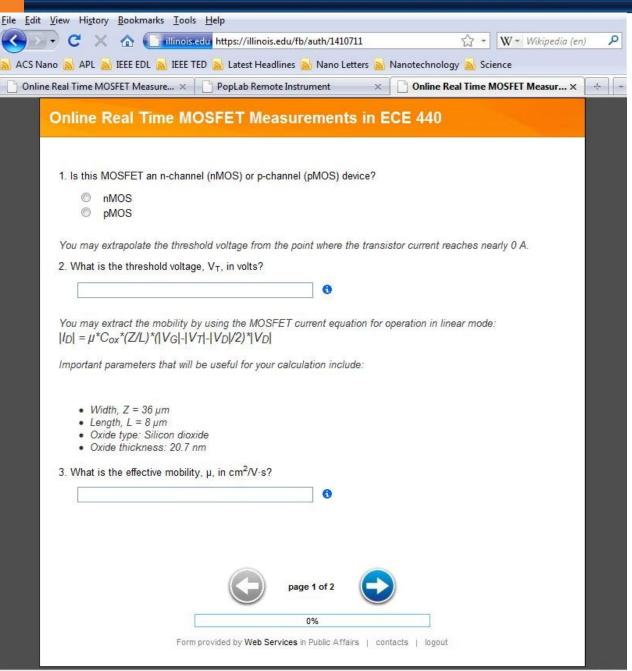
Online Real Time MOSFET Measurements in ECE 440

Websites Used

- 1. PopLab Remote Instrument
- 2. Answer Submission Survey

Instructions

You will perform measurements on a MOSFET located in the Pop Lab.


- If you are off-campus, first connect to the U of I network using VPN.
- 2. Open the PopLab Remote Instrument (opens in a new window).
- 3. Click "Connect."
- 4. Choose the ID-VG test.
- 5. Set $V_D = 0.05$ V and V_G to go between -10 V to 10 V.
- 6. Ask for about 30-60 data points (you may get fewer).
- 7. Once ready, click to "Request and Run" the test (test will take ~30 seconds).
- 8. Copy/paste the raw data output to a spreadsheet or text file for further analysis.
- 9. Click "Disconnect."
- 10. Please fill out the answer survey (opens in a new window).

Notes on using the interface:

- You will only see data if you are connected (be sure to click "Connect"). If another user is connected, you will see his or her test running and then your test will run. Your tests will generally be labeled as "My Test," though in some browsers your test might get misidentified as someone else's, in which case you should identify your test based on when the results appear.
- If ID goes below zero, you may take those values to be zero.
- On rare occasions the first point in the test will actually be from the previous test due to a glitch in the instrument. Please disregard any unusual first points.
- You may receive fewer points back than requested depending on the latency of your connection. Try requesting at least double the points you really need to get all data.
- If you have questions please contact sdutta3@illinois.edu.

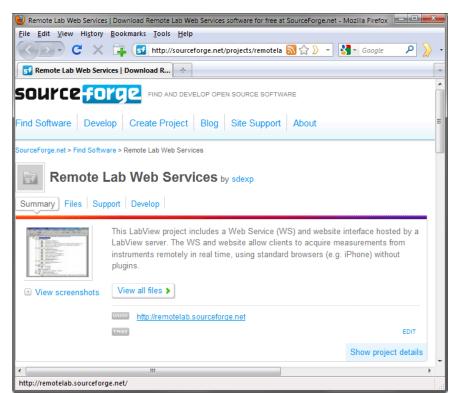
ECE ILLINOIS

Done

-

Feedback & Integration into Courses

- Highest impact in theoretical classes
 - Complements curriculum, does not replace it
 - Instructional lab classes still valuable
- Different instruments/tests in Web Service
- Different interface for each audience
- Assign a test and data analysis problem for each topic, before exam


Conclusions and Direction

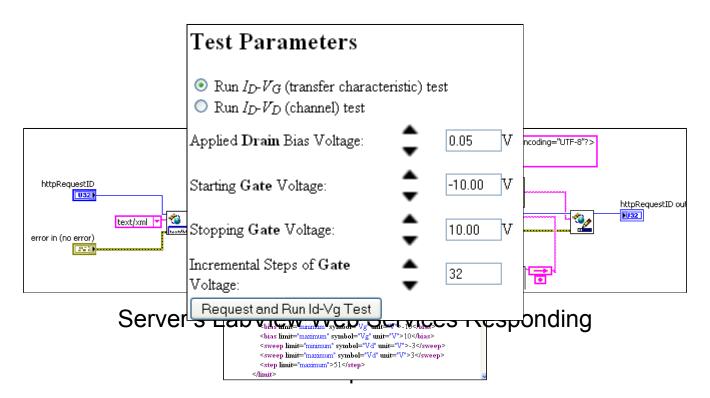
- Low-bandwidth, real-time lab measurements with Web Services
- Introduce as ancillary, new aspect of theoretical classes
- Flexible and reusable
- Could further standardize
 - Web Services Resource Framework

Download It!

 Remote Lab Web Services http://remotelab.sourceforge.net

Our Implementation Uses: •LabView 8.6 software •Keithley 2612 hardware

Acknowledgments


- Mark Bohr at Intel for hardware donation
- Dr. J. C. Lee for LabView assistance
- Josh Potts and Jeremy Bird for IT support
- NSF CCF-0829907 and CAREER ECCS-0954423

Web Technology Illustrated

Response Sent to Client, Interpreted by Client

Web-based Learning in ECE

I